Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
NPJ Urban Sustain ; 3(1): 31, 2023.
Article in English | MEDLINE | ID: covidwho-20233776

ABSTRACT

The positive health effects of green space have received increasing attention, however, on-site surveys and city-level research to reveal the relationship between urban park recreation and urbanite health in metropolitan areas during a post-pandemic period are lacking. We conducted an on-site survey using a questionnaire with 225 respondents from 22 urban parks distributed across the metropolitan area of Beijing during the early COVID-19 eased period with another 1346 respondents in 2021 to make verification. We identified factors that could influence public perceptions of park quality and human health (i.e., physical, mental, and social health) and revealed gender differences in perceptions of park characteristics. The correspondence pattern of perceived urban park quality with social health is distinct from that of physical and mental health. Due to the strict social distancing policy in early COVID-19 period, urban parks in different levels of urbanization environment could exert varied health effects.

2.
Conservation Letters ; 16(1), 2023.
Article in English | ProQuest Central | ID: covidwho-2266941

ABSTRACT

In the present Anthropocene, wild animals are globally affected by human activity. Consumer fireworks during New Year (NY) are widely distributed in W-Europe and cause strong disturbances that are known to incur stress responses in animals. We analyzed GPS tracks of 347 wild migratory geese of four species during eight NYs quantifying the effects of fireworks on individuals. We show that, in parallel with particulate matter increases, during the night of NY geese flew on average 5–16 km further and 40–150 m higher, and more often shifted to new roost sites than on previous nights. This was also true during the 2020–2021 fireworks ban, despite fireworks activity being reduced. Likely to compensate for extra flight costs, most geese moved less and increased their feeding activity in the following days. Our findings indicate negative effects of NY fireworks on wild birds beyond the previously demonstrated immediate response.

3.
ACS Sens ; 8(3): 1252-1260, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2287312

ABSTRACT

Methanol is a respiratory biomarker for pulmonary diseases, including COVID-19, and is a common chemical that may harm people if they are accidentally exposed to it. It is significant to effectively identify methanol in complex environments, yet few sensors can do so. In this work, the strategy of coating perovskites with metal oxides is proposed to synthesize core-shell CsPbBr3@ZnO nanocrystals. The CsPbBr3@ZnO sensor displays a response/recovery time of 3.27/3.11 s to 10 ppm methanol at room temperature, with a detection limit of 1 ppm. Using machine learning algorithms, the sensor can effectively identify methanol from an unknown gas mixture with 94% accuracy. Meanwhile, density functional theory is used to reveal the formation process of the core-shell structure and the target gas identification mechanism. The strong adsorption between CsPbBr3 and the ligand zinc acetylacetonate lays the foundation for the formation of the core-shell structure. The crystal structure, density of states, and band structure were influenced by different gases, which results in different response/recovery behaviors and makes it possible to identify methanol from mixed environments. Furthermore, due to the formation of type II band alignment, the gas response performance of the sensor is further improved under UV light irradiation.


Subject(s)
COVID-19 , Zinc Oxide , Humans , Methanol , Adsorption , Gases , Machine Learning
4.
Microbiol Spectr ; : e0419422, 2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2282132

ABSTRACT

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developing the capacity for immune evasion and resistance to existing vaccines and drugs. To address this, development of vaccines against coronavirus disease 2019 (COVID-19) has focused on universality, strong T cell immunity, and rapid production. Synthetic peptide vaccines, which are inexpensive and quick to produce, show low toxicity, and can be selected from the conserved SARS-CoV-2 proteome, are promising candidates. In this study, we evaluated the effectiveness of a synthetic peptide cocktail containing three murine CD4+ T-cell epitopes from the SARS-CoV-2 nonspike proteome and one B-cell epitope from the Omicron BA.1 receptor-binding domain (RBD), along with aluminum phosphate (Al) adjuvant and 5' cytosine-phosphate-guanine 3' oligodeoxynucleotide (CpG-ODN) adjuvant in mice. The peptide cocktail induced good Th1-biased T-cell responses and effective neutralizing-antibody titers against the Omicron BA.1 variant. Additionally, H11-K18-hACE2 transgenic mice were fully protected against lethal challenge with the BA.1 strain, with a 100% survival rate and reduced pulmonary viral load and pathological lesions. Subcutaneous administration was found to be the superior route for synthetic peptide vaccine delivery. Our findings demonstrate the effectiveness of the peptide cocktail in mice, suggesting the feasibility of synthetic peptide vaccines for humans. IMPORTANCE Current vaccines based on production of neutralizing antibodies fail to prevent the infection and transmission of SARS-CoV-2 Omicron and its subvariants. Understanding the critical factors and avoiding the disadvantages of vaccine strategies are essential for developing a safe and effective COVID-19 vaccine, which would include a more effective and durable cellular response, minimal effects of viral mutations, rapid production against emerging variants, and good safety. Peptide-based vaccines are an excellent alternative because they are inexpensive, quick to produce, and very safe. In addition, human leukocyte antigen T-cell epitopes could be targeted at robust T-cell immunity and selected in the conserved region of the SARS-CoV-2 variants. Our study showed that a synthetic SARS-CoV-2-derived peptide cocktail induced full protection against lethal infection with Omicron BA.1 in H11-K18-hACE2 mice for the first time. This could have implications for the development of effective COVID-19 peptide vaccines for humans.

5.
Microbiol Spectr ; : e0268722, 2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2253699

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is still ongoing. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) are circulating worldwide, making it resistant to existing vaccines and antiviral drugs. Therefore, the evaluation of variant-based expanded spectrum vaccines to optimize the immune response and provide broad protectiveness is very important. In this study, we expressed spike trimer protein (S-TM) based on the Beta variant in a GMP-grade workshop using CHO cells. Mice were immunized twice with S-TM protein combined with aluminum hydroxide (Al) and CpG Oligonucleotides (CpG) adjuvant to evaluate its safety and efficacy. BALB/c immunized with S-TM + Al + CpG induced high neutralizing antibody titers against the Wuhan-Hu-1 strain (wild-type, WT), the Beta and Delta variants, and even the Omicron variant. In addition, compared with the S-TM + Al group, the S-TM + Al + CpG group effectively induced a stronger Th1-biased cell immune response in mice. Furthermore, after the second immunization, H11-K18 hACE2 mice were well protected from challenge with the SARS-CoV-2 Beta strain, with a 100% survival rate. The virus load and pathological lesions in the lungs were significantly reduced, and no virus was detected in mouse brain tissue. Our vaccine candidate is practical and effective for current SARS-CoV-2 VOCs, which will support its further clinical development for potential sequential immune and primary immunization. IMPORTANCE Continuous emergence of adaptive mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to challenge the use and development of existing vaccines and drugs. The value of variant-based vaccines that are capable of inducing a higher and broader protection immune response against SARS-CoV-2 variants is currently being evaluated. This article shows that a recombinant prefusion spike protein based on a Beta variant was highly immunogenic and could induced a stronger Th1-biased cell immune response in mice and was effectively protective against challenge with the SARS-CoV-2 Beta variant. Importantly, this Beta-based SARS-CoV-2 vaccine could also offer a robust humoral immune response with effectively broad neutralization ability against the wild type and different variants of concern (VOCs): the Beta, Delta, and Omicron BA.1 variants. To date, the vaccine described here has been produced in a pilot scale (200L), and the development, filling process, and toxicological safety evaluation have also been completed, which provides a timely response to the emerging SARS-CoV-2 variants and vaccine development.

6.
Antiviral Res ; 209: 105465, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2231152

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has resulted in significant global morbidity, mortality, and societal disruption. Currently, effective antiviral drugs for the treatment of SARS-CoV-2 infection are limited. Therefore, safe and effective antiviral drugs to combat COVID-19 are urgently required. In previous studies, we showed that 3-indoleacetonitrile, a plant growth hormone produced by cruciferous (Brassica) vegetables, is effective in treating influenza A virus infection. However, the molecular mechanisms underlying these effects remain unclear. Herein, we demonstrated that 3-indoleacetonitrile exhibits broad-spectrum antiviral activity and is effective against HSV-1 and VSV infections in vitro. This phenomenon prompted us to study its role in the anti-SARS-CoV-2 process. Interestingly, 3-indoleacetonitrile exhibited antiviral activity against SARS-CoV-2 in vitro. Importantly, tail vein injection of 3-indoleacetonitrile resulted in good antiviral activity in mouse models infected with WBP-1 (a mouse adaptation of the SARS-CoV-2 strain). Mechanistically, 3-indoleacetonitrile promoted the host interferon signalling pathway response and inhibited autophagic flux. Furthermore, we demonstrated that 3-indoleacetonitrile induced an increase in mitochondrial antiviral-signalling (MAVS) protein levels, which might be attributed to its inhibition of the interaction between MAVS and the selective autophagy receptor SQSTM1. Overall, our results demonstrate that 3-indoleacetonitrile is potently active against SARS-CoV-2 in vitro and in vivo, which may provide a foundation for further clinical testing for the treatment of COVID-19. In addition, considering its broad-spectrum antiviral effect, it should be explored whether it also has an effect on other viruses that threaten human health.

7.
Nature ; 612(7941): 748-757, 2022 12.
Article in English | MEDLINE | ID: covidwho-2151056

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) and several bat coronaviruses use dipeptidyl peptidase-4 (DPP4) as an entry receptor1-4. However, the receptor for NeoCoV-the closest known MERS-CoV relative found in bats-remains unclear5. Here, using a pseudotype virus entry assay, we found that NeoCoV and its close relative, PDF-2180, can efficiently bind to and use specific bat angiotensin-converting enzyme 2 (ACE2) orthologues and, less favourably, human ACE2 as entry receptors through their receptor-binding domains (RBDs) on the spike (S) proteins. Cryo-electron microscopy analysis revealed an RBD-ACE2 binding interface involving protein-glycan interactions, distinct from those of other known ACE2-using coronaviruses. We identified residues 337-342 of human ACE2 as a molecular determinant restricting NeoCoV entry, whereas a NeoCoV S pseudotyped virus containing a T510F RBD mutation efficiently entered cells expressing human ACE2. Although polyclonal SARS-CoV-2 antibodies or MERS-CoV RBD-specific nanobodies did not cross-neutralize NeoCoV or PDF-2180, an ACE2-specific antibody and two broadly neutralizing betacoronavirus antibodies efficiently inhibited these two pseudotyped viruses. We describe MERS-CoV-related viruses that use ACE2 as an entry receptor, underscoring a promiscuity of receptor use and a potential zoonotic threat.


Subject(s)
Angiotensin-Converting Enzyme 2 , Chiroptera , Middle East Respiratory Syndrome Coronavirus , Receptors, Virus , Virus Internalization , Animals , Humans , Angiotensin-Converting Enzyme 2/metabolism , Chiroptera/metabolism , Chiroptera/virology , Cryoelectron Microscopy , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Middle East Respiratory Syndrome Coronavirus/metabolism , Protein Binding , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Dipeptidyl Peptidase 4/metabolism , Viral Zoonoses
8.
Front Psychiatry ; 13: 989904, 2022.
Article in English | MEDLINE | ID: covidwho-2142287

ABSTRACT

Background: The outbreak of COVID-19 had a widely negative effect on adolescents' academics, stress, and mental health. At a critical period of cortical development, adolescents' cognition levels are highly developed, while the ability of emotion control is not developed at the same pace. Faced with negative emotions such as stress and social loneliness caused by COVID-19, adolescents' "hot" executive function encounters severer emotional regulation challenges than ever before. Objective: The present study established a moderated mediation model to investigate the impact of rumination on "hot" execution function among Chinese middle school students during the COVID-19 pandemic, and the specific role of depression and mindfulness in the association. Materials and methods: This cross-sectional study was conducted on 650 students recruited from a province in central China. The participants completed questionnaires and experiment between July 2021 and August 2021. Rumination Responses Scales, Self-rating Depression Scale, and Mindful Attention Awareness Scale were used to measure the level of rumination, depression, and mindfulness. The reaction time and accuracy of the emotional conflict experiment were recorded to reflect the "hot" executive function. Results: The results of the moderated mediation model indicated that rumination of middle school students significantly and positively predicted depression in adolescents (ß = 0.26, p < 0.001). Meanwhile, the indirect effect of depression on the relationship between rumination and "hot" executive function was significant; depression partially mediated this relationship (word-face congruent condition: ß = -0.09, p < 0.01; word-face incongruent condition: ß = -0.07, p < 0.05). Furthermore, mindfulness buffered the association between rumination and depression, according to moderated mediation analysis (ß = -0.11, p < 0.001). For adolescents with low levels of mindfulness, the relationship was substantially stronger. Conclusion: In the context of the COVID-19 pandemic, middle school students' rumination would lead to depression, which can negatively impact their "hot" executive function. Besides, mindfulness could resist the adverse effect of rumination on depression. The educators should pay more attention to students' mental health, provide targeted strategies that boost mindfulness to promote their cognitive flexibility, and thus protect the normal development of their executive function during crisis events.

9.
Front Psychiatry ; 13: 989128, 2022.
Article in English | MEDLINE | ID: covidwho-2022920

ABSTRACT

Introduction: As the epidemic spreads, the problem of Internet addiction disorder (IAD) stand out and getting serious. The present study aimed to investigate IAD among junior high school students during the spread of the COVID-19, and to explore the mediating role of cognitive failure between self-concept clarity and IAD, and the moderating role of mindfulness. Methods: A sample of 1,153 junior high school students from two randomly selected junior high schools in Henan Province were surveyed anonymously with Self-concept Clarity Scale (SCCS), Cognitive Failure Questionnaire (CFQ), Mindfulness Attention Awareness Scale (MAAS) and Internet Addiction disorder Test (IAT). The sample was obtained through random cluster sampling, taking classes as the clusters and students as the elements. Results: (1) Self-concept clarity was negatively correlated with Internet addiction disorder; (2) Self-concept clarity not only had a direct effect on Internet addiction disorder, but also indirectly affect Internet addiction disorder through cognitive failure; (3) Mindfulness moderates the relationship between self-concept clarity and Internet addiction disorder, as well as the relationship between cognitive failure and Internet addiction disorder. Compared with low levels of mindfulness, both the protective effect of self-concept clarity and the effect of cognitive failure on Internet addiction disorder were stronger among junior high school students who were at high levels of mindfulness. Conclusion: This study constructs a moderated mediation model to explain the effect of self-concept clarity on Internet addiction disorder. It is effective to alleviate Internet addiction disorder by improving self-concept clarity and mindfulness level of the junior school students.

10.
Exp Anim ; 71(4): 500-509, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-1902702

ABSTRACT

Human respiratory syncytial virus (HRSV) is a major cause of lower respiratory tract infection in infants. The lack of ideal animal models is one of the major obstacles in evaluateing the efficacy of HRSV vaccines. In this study, HRSV-50 was obtained from Hep-2 cells at the 50th passage of the original Long strain (ATCC VR-26). BALB/c mice (6 weeks) were challenged with different titers of HRSV-50. Shockingly, all mice died after 4 days of challenge (6 × 106 PFU/mouse). Whole-genome sequencing revealed 7 amino acid mutations compared with the original Long strain. To verify whether the lethal model can be used to effectively evaluate the efficacy of HRSV candidate vaccines, we studied the protective effect of FRBD protein (Pre-F of HRSV and S receptor binding domain of SARS-CoV-2) with Adju-phos or MA103 adjuvant. All mice in the PBS group died after the HRSV-50 challenge, whereas Adju-phos provided partial protection. These results suggest that we have successfully established a lethal model of HRSV in BALB/c mice.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Infant , Humans , Mice , Animals , Respiratory Syncytial Virus, Human/genetics , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/prevention & control , SARS-CoV-2
11.
Chemical Engineering Journal ; : 136864, 2022.
Article in English | ScienceDirect | ID: covidwho-1821170

ABSTRACT

Synthetic biology enabling technologies have been harnessed to create new diagnostic technologies. However, most strategies involve error-prone amplification steps and limitations of accuracy in RNA detection. Here, a cell-free synthetic biology-powered biosensing strategy, termed as SHARK (Synthetic Enzyme Shift RNA Signal Amplifier Related Cas13a Knockdown Reaction), could efficiently and accurately amplify RNA signal by leveraging the collateral cleavage of activated Cas13a to regulate cell-free enzyme synthesis. Based on cascade amplification and tailored enzyme output, SHARK behaves broad compatibility in different scenarios. The portable device based on SHARK was successfully used as SARS-CoV-2 biosensors with high sensitivity and selectivity, and the results were highly consistent with Ct values of qRT-PCR. In addition, when combined with machine learning, SHARK performs bio-computations and thus for cancer diagnosis and staging based on 64 clinical samples. SHARK shows characteristics of precise recognition, cascade amplification and tailored signal outputting comparisons with established assays, presenting significant potential in developing next-generation RNA detection technology.

12.
Innovation (Camb) ; 3(2): 100221, 2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1713028

ABSTRACT

The highly pathogenic and readily transmissible SARS-CoV-2 has caused a global coronavirus pandemic, urgently requiring effective countermeasures against its rapid expansion. All available vaccine platforms are being used to generate safe and effective COVID-19 vaccines. Here, we generated a live-attenuated candidate vaccine strain by serial passaging of a SARS-CoV-2 clinical isolate in Vero cells. Deep sequencing revealed the dynamic adaptation of SARS-CoV-2 in Vero cells, resulting in a stable clone with a deletion of seven amino acids (N679SPRRAR685) at the S1/S2 junction of the S protein (named VAS5). VAS5 showed significant attenuation of replication in multiple human cell lines, human airway epithelium organoids, and hACE2 mice. Viral fitness competition assays demonstrated that VAS5 showed specific tropism to Vero cells but decreased fitness in human cells compared with the parental virus. More importantly, a single intranasal injection of VAS5 elicited a high level of neutralizing antibodies and prevented SARS-CoV-2 infection in mice as well as close-contact transmission in golden Syrian hamsters. Structural and biochemical analysis revealed a stable and locked prefusion conformation of the S trimer of VAS5, which most resembles SARS-CoV-2-3Q-2P, an advanced vaccine immunogen (NVAX-CoV2373). Further systematic antigenic profiling and immunogenicity validation confirmed that the VAS5 S trimer presents an enhanced antigenic mimic of the wild-type S trimer. Our results not only provide a potent live-attenuated vaccine candidate against COVID-19 but also clarify the molecular and structural basis for the highly attenuated and super immunogenic phenotype of VAS5.

13.
Nature ; 603(7903): 919-925, 2022 03.
Article in English | MEDLINE | ID: covidwho-1655591

ABSTRACT

Omicron (B.1.1.529), the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising concerns about the effectiveness of antibody therapies and vaccines1,2. Here we examined whether sera from individuals who received two or three doses of inactivated SARS-CoV-2 vaccine could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2 out of 60) and 95% (57 out of 60) for individuals who had received 2 and 3 doses of vaccine, respectively. For recipients of three vaccine doses, the geometric mean neutralization antibody titre for Omicron was 16.5-fold lower than for the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in triple vaccinees, half of which recognized the receptor-binding domain, and showed that a subset (24 out of 163) potently neutralized all SARS-CoV-2 variants of concern, including Omicron. Therapeutic treatments with representative broadly neutralizing monoclonal antibodies were highly protective against infection of mice with SARS-CoV-2 Beta (B.1.351) and Omicron. Atomic structures of the Omicron spike protein in complex with three classes of antibodies that were active against all five variants of concern defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to a class of antibodies that bind on the right shoulder of the receptor-binding domain by altering local conformation at the binding interface. Our results rationalize the use of three-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are rational targets for a universal sarbecovirus vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Memory B Cells , SARS-CoV-2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Disease Models, Animal , Humans , Memory B Cells/immunology , Mice , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
14.
Cell ; 185(5): 860-871.e13, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1650841

ABSTRACT

The SARS-CoV-2 Omicron variant with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the spike (S) from Omicron reveals amino acid substitutions forging interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of the viral fusion step. Alterations in local conformation, charge, and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Structure of the Omicron S bound with human ACE2, together with the analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members, as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies, sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.


Subject(s)
Immune Evasion/physiology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Humans , Mutagenesis, Site-Directed , Neutralization Tests , Protein Binding , Protein Domains/immunology , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance , Virus Attachment
15.
China CDC Wkly ; 4(4): 57-65, 2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-1631490

ABSTRACT

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: Effectiveness of China's 2 inactivated vaccines (BBIBP-CorV and CoronaVac) against pre-Delta severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants ranged from 47% to over 90%, depending on the clinical endpoint, and with greater effectiveness against more severe coronavirus disease 2019 (COVID-19). During an outbreak in Guangdong, inactivated vaccine effectiveness (VE) against the Delta variant was 70% for symptomatic infection and 100% for severe COVID-19. However, separate or combined VE estimates for the two inactivated vaccines against Delta are not available. WHAT IS ADDED BY THIS REPORT?: In an outbreak that started in a hospital, VEs of completed primary vaccination with inactivated COVID-19 vaccines against symptomatic COVID-19, COVID-19 pneumonia, and severe COVID-19 caused by the Delta variant were 51%, 61%, and 82%. Completed primary vaccination reduced the risk of progressing from mild to moderate or severe COVID-19 by 74%. VE estimates for BBIBP-CorV and CoronaVac or combined vaccination were similar, and partial vaccination was ineffective. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Completed primary vaccination with either of the 2 inactivated COVID-19 vaccines reduces risk of symptomatic COVID-19, COVID-19 pneumonia, and severe COVID-19 caused by the Delta variant. Completion of the completed primary vaccination with two doses is necessary for protection from Delta.

16.
Frontiers in public health ; 9, 2021.
Article in English | EuropePMC | ID: covidwho-1564459

ABSTRACT

As Coronavirus Disease-2019 (COVID-19) vaccines became available in December 2020, increasingly more surveys were organized to examine the acceptance of vaccination, while most of them were conducted online. This study aimed to explore the difference between online and traditional on-site surveys in terms of COVID-19 vaccine acceptance. From November to December 2020, an online survey (n = 2013) and an on-site survey (n = 4,316) were conducted simultaneously in China. Multivariate logistic regression was used to identify influencing factors of acceptance, and propensity score matching (PSM) was adopted to balance the outcomes. As a result, 90.0% of the online respondents accepted COVID-19 vaccination, while it was only 82.1% in the on-site survey. After applying PSM, the acceptance rate of the on-site survey was declined to 78.6%. The age structure, residence location, education, and health status were observed as important factors in addressing vaccination acceptance, which needed to be specifically considered when designing online surveys.

17.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: covidwho-1517667

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediates membrane fusion to allow entry of the viral genome into host cells. To understand its detailed entry mechanism and develop a specific entry inhibitor, in situ structural information on the SARS-CoV-2 spike protein in different states is urgent. Here, by using cryo-electron tomography, we observed both prefusion and postfusion spikes in ß-propiolactone-inactivated SARS-CoV-2 virions and solved the in situ structure of the postfusion spike at nanometer resolution. Compared to previous reports, the six-helix bundle fusion core, the glycosylation sites, and the location of the transmembrane domain were clearly resolved. We observed oligomerization patterns of the spikes on the viral membrane, likely suggesting a mechanism of fusion pore formation.


Subject(s)
SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Motifs , Animals , Chlorocebus aethiops , Cryoelectron Microscopy , Electron Microscope Tomography , Glycosylation , Protein Domains , Protein Multimerization , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
18.
Nat Commun ; 12(1): 5654, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440471

ABSTRACT

There is an urgent need for animal models to study SARS-CoV-2 pathogenicity. Here, we generate and characterize a novel mouse-adapted SARS-CoV-2 strain, MASCp36, that causes severe respiratory symptoms, and mortality. Our model exhibits age- and gender-related mortality akin to severe COVID-19. Deep sequencing identified three amino acid substitutions, N501Y, Q493H, and K417N, at the receptor binding domain (RBD) of MASCp36, during in vivo passaging. All three RBD mutations significantly enhance binding affinity to its endogenous receptor, ACE2. Cryo-electron microscopy analysis of human ACE2 (hACE2), or mouse ACE2 (mACE2), in complex with the RBD of MASCp36, at 3.1 to 3.7 Å resolution, reveals the molecular basis for the receptor-binding switch. N501Y and Q493H enhance the binding affinity to hACE2, whereas triple mutations at N501Y/Q493H/K417N decrease affinity and reduce infectivity of MASCp36. Our study provides a platform for studying SARS-CoV-2 pathogenesis, and unveils the molecular mechanism for its rapid adaptation and evolution.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites/genetics , COVID-19/mortality , COVID-19/virology , Disease Models, Animal , Female , Humans , Male , Mice , Protein Binding/genetics , Protein Domains/genetics , SARS-CoV-2/genetics , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics
20.
Cell Res ; 31(1): 25-36, 2021 01.
Article in English | MEDLINE | ID: covidwho-1387275

ABSTRACT

Structural principles underlying the composition and synergistic mechanisms of protective monoclonal antibody cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic antibody cocktail against SARS-CoV-2. On the basis of our previously identified humanized cross-neutralizing antibody H014, we systematically analyzed a fully human naive antibody library and rationally identified a potent neutralizing antibody partner, P17, which confers effective protection in animal model. Cryo-EM studies dissected the nature of the P17 epitope, which is SARS-CoV-2 specific and distinctly different from that of H014. High-resolution structure of the SARS-CoV-2 spike in complex with H014 and P17, together with functional investigations revealed that in a two-antibody cocktail, synergistic neutralization was achieved by S1 shielding and conformational locking, thereby blocking receptor attachment and viral membrane fusion, conferring high potency as well as robustness against viral mutation escape. Furthermore, cluster analysis identified a hypothetical 3rd antibody partner for further reinforcing the cocktail as pan-SARS-CoVs therapeutics.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Epitopes/immunology , SARS-CoV-2/immunology , Single-Chain Antibodies/immunology , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/immunology , COVID-19/prevention & control , Chlorocebus aethiops , Disease Models, Animal , Humans , Single-Chain Antibodies/pharmacology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL